skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gupta, Jayant"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Adams, Benjamin; Griffin, Amy L; Scheider, Simon; McKenzie, Grant (Ed.)
    Given a collection of Boolean spatial feature types, their instances, a neighborhood relation (e.g., proximity), and a hierarchical taxonomy of the feature types, the goal is to find the subsets of feature types or their parents whose spatial interaction is statistically significant. This problem is for taxonomy-reliant applications such as ecology (e.g., finding new symbiotic relationships across the food chain), spatial pathology (e.g., immunotherapy for cancer), retail, etc. The problem is computationally challenging due to the exponential number of candidate co-location patterns generated by the taxonomy. Most approaches for co-location pattern detection overlook the hierarchical relationships among spatial features, and the statistical significance of the detected patterns is not always considered, leading to potential false discoveries. This paper introduces two methods for incorporating taxonomies and assessing the statistical significance of co-location patterns. The baseline approach iteratively checks the significance of co-locations between leaf nodes or their ancestors in the taxonomy. Using the Benjamini-Hochberg procedure, an advanced approach is proposed to control the false discovery rate. This approach effectively reduces the risk of false discoveries while maintaining the power to detect true co-location patterns. Experimental evaluation and case study results show the effectiveness of the approach. 
    more » « less
  2. Given a set S of spatial feature types, its feature instances, a study area, and a neighbor relationship, the goal is to find pairs such that C is a statistically significant regional-colocation pattern in r_{g}. This problem is important for applications in various domains including ecology, economics, and sociology. The problem is computationally challenging due to the exponential number of regional colocation patterns and candidate regions. Previously, we proposed a miner [Subhankar et. al, 2022] that finds statistically significant regional colocation patterns. However, the numerous simultaneous statistical inferences raise the risk of false discoveries (also known as the multiple comparisons problem) and carry a high computational cost. We propose a novel algorithm, namely, multiple comparisons regional colocation miner (MultComp-RCM) which uses a Bonferroni correction. Theoretical analysis, experimental evaluation, and case study results show that the proposed method reduces both the false discovery rate and computational cost. 
    more » « less
  3. Beecham, Roger; Long, Jed A; Smith, Dianna; Zhao, Qunshan; Wise, Sarah (Ed.)
    Given a set S of spatial feature types, its feature instances, a study area, and a neighbor relationship, the goal is to find pairs such that C is a statistically significant regional-colocation pattern in r_{g}. This problem is important for applications in various domains including ecology, economics, and sociology. The problem is computationally challenging due to the exponential number of regional colocation patterns and candidate regions. Previously, we proposed a miner [Subhankar et. al, 2022] that finds statistically significant regional colocation patterns. However, the numerous simultaneous statistical inferences raise the risk of false discoveries (also known as the multiple comparisons problem) and carry a high computational cost. We propose a novel algorithm, namely, multiple comparisons regional colocation miner (MultComp-RCM) which uses a Bonferroni correction. Theoretical analysis, experimental evaluation, and case study results show that the proposed method reduces both the false discovery rate and computational cost. 
    more » « less
  4. Spatial variability is a prominent feature of various geographic phenomena such as climatic zones, USDA plant hardiness zones, and terrestrial habitat types (e.g., forest, grasslands, wetlands, and deserts). However, current deep learning methods follow a spatial-one-size-fits-all (OSFA) approach to train single deep neural network models that do not account for spatial variability. Quantification of spatial variability can be challenging due to the influence of many geophysical factors. In preliminary work, we proposed a spatial variability aware neural network (SVANN-I, formerly called SVANN ) approach where weights are a function of location but the neural network architecture is location independent. In this work, we explore a more flexible SVANN-E approach where neural network architecture varies across geographic locations. In addition, we provide a taxonomy of SVANN types and a physics inspired interpretation model. Experiments with aerial imagery based wetland mapping show that SVANN-I outperforms OSFA and SVANN-E performs the best of all. 
    more » « less
  5. Abstract. Given aggregated mobile device data, the goal is to understand the impact of COVID-19 policy interventions on mobility. This problem is vital due to important societal use cases, such as safely reopening the economy. Challenges include understanding and interpreting questions of interest to policymakers, cross-jurisdictional variability in choice and time of interventions, the large data volume, and unknown sampling bias. The related work has explored the COVID-19 impact on travel distance, time spent at home, and the number of visitors at different points of interest. However, many policymakers are interested in long-duration visits to high-risk business categories and understanding the spatial selection bias to interpret summary reports. We provide an Entity Relationship diagram, system architecture, and implementation to support queries on long-duration visits in addition to fine resolution device count maps to understand spatial bias. We closely collaborated with policymakers to derive the system requirements and evaluate the system components, the summary reports, and visualizations. 
    more » « less
  6. null (Ed.)
  7. Spatial hotspot discovery aims at discovering regions with statistically significant concentration of activities. It has shown great value in many important societal applications such as transportation engineering, public health, and public safety. This paper formulates the problem of Linear Hotspot Detection on All Simple Paths (LHDA) which identifies hotspots from the complete set of simple paths enumerated from a given spatial network. LHDA overcomes the limitations of existing methods which miss hotspots that naturally occur along linear simple paths on a road network. To address the computational challenges, we propose a novel algorithm named bidirectional fragment-multi-graph traversal (ASP_FMGT) and two path reduction approaches ASP_NR and ASP_HD. Experimental analyses show that ASP_FMGT has substantially improved performance over state-of-the-art approach (ASP_Base) while keeping the solution complete and correct. Moreover, a case study on real-world datasets showed that ASP_FMGT outperforms existing approaches. 
    more » « less